日前,工信部印发的《首台(套)重大技术装备推广应用指导目录(2024年版)》(以下简称“目录”)中显示,中国已攻克氟化氩光刻机,其中该目录中,公开可见的与光刻机代际水平和性能等密切相关的光源193纳米,分辨率≤65nm,套刻≤8nm指标引发了业内的关注。
日前,工信部印发的《首台(套)重大技术装备推广应用指导目录(2024年版)》(以下简称“目录”)中显示,中国已攻克氟化氩光刻机,其中该目录中,公开可见的与光刻机代际水平和性能等密切相关的光源193纳米,分辨率≤65nm,套刻≤8nm指标引发了业内的关注。
几乎是与此同时,上海微电子披露了一项名为“极紫外辐射发生装置及光刻设备”的发明专利。两则消息凑在一起,某些媒体和所谓大V们据称撰文称,该设备可以用于生产8纳米及以下工艺的芯片制造,甚至EUV光刻机的推出也是指日可待。于是乎又一波中国通过自主创新,突破封锁的情绪开始蔓延。
事实究竟如何?
差距15-20年,ASML领先太多
针对我们开篇所说的情绪蔓延,也有不乏理性的媒体和业内人士,从客观真实的角度分析了我们这个所谓的氟化氩光刻机可能具备的真实代际水平和性能(注:我们之所以使用“可能”,是因为目录中披露的信息相当不完整,例如关键的NA数值孔径、产能等),这里我们不再赘述,有兴趣的读者可以自行搜索(如果有幸还能找到的话,不过我们强烈推荐微信公众号“梓豪谈芯”中相关的原创文章)。
我们这里只是简单说下人家得出的结论。此次国产套刻指标≤8nm的氟化氩光刻机,实际制程约为55nm,技术水平仅相当于ASML于2015年二季度出货的TWINSCAN XT 1460K,甚至部分关键指标不如ASML 2006年推出的干式DUV光刻机XT 1450,所以总体差距在15—20年。
对标有失偏颇,曝出尼康NSR-S636E狠角色
曾几何时,我们在光刻机领域,始终将ASML作为主要的追赶对象,包括此次目录中引发争议的套刻指标≤8nm的氟化氩光刻机,业内也都是将其与ASML类似的机型作为对比(目的是为了推断出咱们这款光刻机的实际水平),例如我们之前提及的ASML于2015年二季度出货的TWINSCAN XT 1460K,也有的将其与ASML的TWINSCAN NXT 1980Fi对比,例如知名的《南华早报》。
从客观的角度看,我们认为《南华早报》的这个对比有失偏颇,毕竟TWINSCAN NXT 1980Fi采用的是浸没式,而业内可以确认的是,我们的套刻≤8nm氟化氩光刻机采用的依然是干式。
不要小看这文字上的差异,其实相较于传统的干法光刻,浸润式光刻利用液体浸润光刻胶层,能够在光刻过程中更好地处理表面不平整和凹凸不平的结构。这种工艺能够提高分辨率和制程的一致性。
由此看,TWINSCAN NXT 1980Fi与我们的套刻≤8nm氟化氩光刻机在制造方法上(根据光源分类)存在着质的差异,放在一起比较有失公允,毕竟从光刻机制造的演进路径,浸润式光刻全面领先于干式光刻理所当然。
不过话又说回来,实际接近TWINSCAN XT 1460K的水平(采用的是干式),但《南华早报》将套刻≤8nm氟化氩光刻机与TWINSCAN NXT 1980Fi放在一起,也许是想让人们误认为是同一水平,只是个别指标的差异吧。
为了便于理解,此处我们简单介绍下光刻机以光源划分的光刻机制造的演进路径。
根据所用光源分类,光刻机经历了5代产品发展。
- 第一代为g线型,属于可见光源,最初为接触接近式光刻机,使用光源为436nm的g-line,对应800-250nm工艺;
- 第二代为i线型,属于紫外光源(UV),最初为接触接近式光刻机,使用光源为365nm的i-line,对应800-250nm工艺;
- 第三代为KrF型,属于深紫外光源(DUV),初代为扫描投影式光刻机,采用248n的KrF光源,对应180-130nm工艺;
- 第四代为ArF型,属于深紫外光源(DUV),采用193nm的ArF光源,分为步进扫描投影式光刻机(干式)和浸没式步进扫描投影式光刻机(湿式),分别对应130-65nm和45-7nm工艺(38nm以下开始使用多重曝光工艺);
- 第五代为EUV型(极紫外),为步进扫描投影式光刻机,采用13.5nm的EUV光源,对应7-3nm工艺。
需要说明的是,为了进一步提升分辨率,未来的光刻技术将采用高数值孔径(High-NA)EUV光刻机。这种技术通过提高光学系统的数值孔径来实现更高的分辨率,从而满足更小技术节点的需求。而在今年1月,ASML首台High-NA EUV光刻机的主要组件抵达英特尔,随后在3月初,英特尔分享了一段视频,展示了在英特尔位于美国俄勒冈州的D1X工厂内,ASML工程团队安装调试的部分画面。
回到咱们的套刻≤8nm氟化氩光刻机,还是《南华早报》的那张对比图,我们意外发现了尼康浸润式ArF光刻机NSR-S636E的身影。而实话实说,要不是《南华早报》的那张对比图,我们真的是不会想到尼康的,尽管在当下的光刻机市场,ASML、尼康和佳能是高市场的三甲(好像都没有第四)几乎垄断了该市场的100%。事实是,在目前的浸没式光刻机市场,目前全球仅有ASML和尼康两家公司可以生产。而NSR-S636E是去年年底尼康发布的。
于无声处听惊雷,日本浸润式DUV光刻机赶超ASML
提及尼康的NSR-S636E,从发布的关键技术指标看,这款曝光机由于采用增强型iAS设计,可用于高精度测量、圆翘曲和畸变校正,重叠精度(MMO)更高,不超过2.1纳米,分辨率小于38纳米,镜头孔径1.35,对比当前型号,它的整体生产效率可提高10-15%,创下尼康光刻设备的新高,产能(wph)高达280片/小时以上(所有尼康半导体光刻系统中生产率最高),停机时间更短,价格比竞品便宜20-30%左右。
那么问题来了,尼康的NSR-S636E处在什么水平呢?
从《南华早报》图中其与TWINSCAN NXT 1980Fi的技术指标对比,可以说二者伯仲难分。这里我们需要补充说明的是,ASML的1980Fi是其1980i系列中的一个最新型号,该系列还包含1980Di等多个型号。
值得一提的是,1980Fi和核心技术指标与更先进的2000i型号一致,但1980Fi的产能(wph)高达330片/小时以上,甚至超过2000i的水平。那么以此来衡量的话,除了EUV,在浸润式DUV光刻机市场,尼康NSR-S636E已经接近,甚至是该市场最好的光刻机(超越ASML)。
对此,有业内称,NSR-S636E可以直接光刻加工量产型5nm制程芯片,这个说法尽管有些夸张,但足见其在浸润式DUV光刻机市场的潜在实力。
更为可贵的是,NSR-S636E是我们的企业和媒体经常挂在嘴边上的完全国产。例如其光源使用的是日本gigaphoton公司(注:它是日本最大工程机械企业小松旗下的半导体企业,在光刻设备的DUV光源领域,Gigaphoton与ASML旗下的Cymer平分市场,即在光源这个光电子领域最上游的环节中,Gigaphoton和Cymer是仅存的两家有能力开发次世代极紫外光刻机用LPP型激光等离子体光源的制造商)的准分子ArF光源、日本JTEM机构的超高表面精度反射式mirror、尼康自己的单工件台等。这点与ASML光刻机主要依赖全球化的进口零件形成了鲜明对比。
当然,我们这里并非说NSR-S636E就是所有零部件100%国产,至少在我们前述的核心技术和部件都是国产,例如在重要的光源方面,ASML一直使用的是德国的蔡司,而NSR-S636E使用的则是日本gigaphoton公司的。
其实通过NSR-S636E,我们看到的不仅是尼康,而是在光刻机整个产业链上,日本所具备的不容小觑的真正的自主创新能力。
而除了技术外,最让我们欣赏的还有尼康的低调。据日经新闻此前报道,这是尼康时隔二十多年再次投放光刻机新品,且已经达到,甚至超越ASML在浸润式DUV光刻机市场的水平,但我们却鲜见日本国内有像近日我们的套刻≤8nm氟化氩光刻机被列入目录时,某些媒体及所谓大V们的高涨情绪和近乎技术盲般、无脑式的吹捧。
俗话说得好:低调做人,高调做事。对于一个企业和产业尤其如此,特别是在非市场因素对于我们极为不利,且越来越苛刻的当下,惟有低调才可以让我们赢得自主创新和国产化的时间。
综上,我们认为,此次国产套刻8nm光刻机引争议背后,除了再次暴露出我们的差距外,也应让我们重新审视在光刻机领域的对手和学习的对象到底是谁?也许我们过去太过于关注ASML,而忽略了日本,尤其是它们在光刻机领域那种低调、务实、深耕国产化的创新和不懈的企业精神。
从这个意义上看,日本才是我们最现实的对手,毕竟我们光刻机的水平还处在低端的干式阶段,下一步则是浸润式,而日本尼康则践行了国产化在浸润式超越ASML的可能,其中个把的技术、经验等无疑更值得我们借鉴。
暂无评论内容